Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 May;3(5):311-29.
doi: 10.1046/j.1462-5822.2001.00119.x.

Cholera toxin and Escherichia coli enterotoxin B-subunits inhibit macrophage-mediated antigen processing and presentation: evidence for antigen persistence in non-acidic recycling endosomal compartments

Affiliations

Cholera toxin and Escherichia coli enterotoxin B-subunits inhibit macrophage-mediated antigen processing and presentation: evidence for antigen persistence in non-acidic recycling endosomal compartments

D G Millar et al. Cell Microbiol. 2001 May.

Abstract

Cholera toxin (Ctx) and the closely related Escherichia coli heat-labile enterotoxin (Etx) not only act as mediators of diarrhoeal disease but also exert potent immunomodulatory properties on mammalian immune systems. The toxins normally exert their diarrhoeagenic effects by initiating receptor-mediated uptake into vesicles that enter a retrograde trafficking pathway, circumventing degradative compartments and targeting them to the trans-Golgi network (TGN) and endoplasmic reticulum. Here, we examine whether receptor-mediated binding and cellular entry by the toxin B-subunits also lead to concomitant changes in uptake and trafficking of exogenous antigens that could contribute to the potent immunomodulatory properties of these toxins. Treatment of the macrophage (J774.2) cell line with Etx B-subunit (EtxB) resulted in EtxB transport to the TGN and also led to the formation of large, translucent, non-acidic, EtxB-devoid vacuoles. When exogenous antigens were added, EtxB-treated cells were found to be proficient in both internalization of ovalbumin (OVA) and phagocytosis of bacterial particles. However, the internalized OVA, instead of trafficking along a lysosome-directed endocytic pathway via acidified endosomes, persisted in a non-acidic, light-density compartment that was distinct from the translucent vacuoles. The rerouted OVA did not co-localize with the endosomal markers rab5 or rab11, nor with EtxB, but was retained in a transferrin receptor-positive compartment. The failure of OVA to enter the late endosomal/lysosomal compartments correlated with a striking inhibition of OVA peptide processing and presentation to OVA-responsive CD4+ T-cells. CtxB also modulated OVA trafficking and inhibited antigen presentation. These findings demonstrate that the B-subunits of Ctx and Etx alter the progression of exogenous antigens along the endocytic processing pathway, and prevent or delay efficient epitope presentation and T-cell stimulation. The formation of such 'antigen depots' could contribute to the immunomodulatory properties of these bacterial virulence determinants.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources