Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 May;280(5):H2023-9.
doi: 10.1152/ajpheart.2001.280.5.H2023.

COX-2-dependent delayed dilatation of cerebral arterioles in response to bradykinin

Affiliations
Free article

COX-2-dependent delayed dilatation of cerebral arterioles in response to bradykinin

J E Brian Jr et al. Am J Physiol Heart Circ Physiol. 2001 May.
Free article

Abstract

Bradykinin (BK) is released in the brain during injury and inflammation. Activation of endothelial BK receptors produces acute dilatation of cerebral arterioles that is mediated by reactive oxygen species (ROS). ROS can also modulate gene expression, including expression of the inducible isoform of cyclooxygenase (COX-2). We hypothesized that exposure of the brain to BK would produce acute dilatation, which would be followed by a delayed dilatation mediated by COX-2. To test this hypothesis in anesthetized rats, BK was placed twice in cranial windows for 7 min, after which the windows were flushed to remove residual BK. The two BK exposures were separated by 30 min. Each BK exposure produced acute dilatation of cerebral arterioles, after which diameter rapidly returned to baseline. Over the subsequent 4.5 h after the second BK exposure, arterioles dilated 48 +/- 8%. Treatment of the cranial window with NS-398, a selective COX-2 inhibitor, or dexamethasone, significantly attenuated the delayed dilatation. Aminoguanidine, a selective inhibitor of inducible nitric oxide synthase, did not alter the delayed dilatation. Cotreatment of cranial windows with BK, superoxide dismutase, and catalase also prevented the delayed dilatation. In separate experiments, exposure of the cortical surface to BK upregulated leptomeningeal expression of COX-2 mRNA. Our results suggest that acute, time-limited exposure of the brain to BK produces delayed dilatation of cerebral arterioles dependent on expression and activity of COX-2.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources