Structural basis of the redox switch in the OxyR transcription factor
- PMID: 11301006
- DOI: 10.1016/s0092-8674(01)00300-2
Structural basis of the redox switch in the OxyR transcription factor
Abstract
The Escherichia coli OxyR transcription factor senses H2O2 and is activated through the formation of an intramolecular disulfide bond. Here we present the crystal structures of the regulatory domain of OxyR in its reduced and oxidized forms, determined at 2.7 A and 2.3 A resolutions, respectively. In the reduced form, the two redox-active cysteines are separated by approximately 17 A. Disulfide bond formation in the oxidized form results in a significant structural change in the regulatory domain. The structural remodeling, which leads to different oligomeric associations, accounts for the redox-dependent switch in OxyR and provides a novel example of protein regulation by "fold editing" through a reversible disulfide bond formation within a folded domain.
Similar articles
-
Redox regulation of OxyR requires specific disulfide bond formation involving a rapid kinetic reaction path.Nat Struct Mol Biol. 2004 Dec;11(12):1179-85. doi: 10.1038/nsmb856. Epub 2004 Nov 14. Nat Struct Mol Biol. 2004. PMID: 15543158
-
Redox-operated genetic switches: the SoxR and OxyR transcription factors.Trends Biotechnol. 2001 Mar;19(3):109-14. doi: 10.1016/s0167-7799(00)01542-0. Trends Biotechnol. 2001. PMID: 11179804 Review.
-
Structures of the Porphyromonas gingivalis OxyR regulatory domain explain differences in expression of the OxyR regulon in Escherichia coli and P. gingivalis.Acta Crystallogr D Biol Crystallogr. 2013 Oct;69(Pt 10):2091-103. doi: 10.1107/S0907444913019471. Epub 2013 Sep 20. Acta Crystallogr D Biol Crystallogr. 2013. PMID: 24100327 Free PMC article.
-
In vivo oxidation-reduction kinetics of OxyR, the transcriptional activator for an oxidative stress-inducible regulon in Escherichia coli.FEBS Lett. 1999 Aug 20;457(1):90-2. doi: 10.1016/s0014-5793(99)01013-3. FEBS Lett. 1999. PMID: 10486570
-
OxyR: a molecular code for redox sensing?Sci STKE. 2002 Nov 5;2002(157):pe46. doi: 10.1126/stke.2002.157.pe46. Sci STKE. 2002. PMID: 12419849 Review.
Cited by
-
Synergistic effects of ascorbate and sorafenib in hepatocellular carcinoma: New insights into ascorbate cytotoxicity.Free Radic Biol Med. 2016 Jun;95:308-322. doi: 10.1016/j.freeradbiomed.2016.03.031. Epub 2016 Mar 30. Free Radic Biol Med. 2016. PMID: 27036367 Free PMC article.
-
Structural insights into the redox-switch mechanism of the MarR/DUF24-type regulator HypR.Nucleic Acids Res. 2012 May;40(9):4178-92. doi: 10.1093/nar/gkr1316. Epub 2012 Jan 11. Nucleic Acids Res. 2012. PMID: 22238377 Free PMC article.
-
Lifestyle-specific S-nitrosylation of protein cysteine thiols regulates Escherichia coli biofilm formation and resistance to oxidative stress.NPJ Biofilms Microbiomes. 2021 Apr 13;7(1):34. doi: 10.1038/s41522-021-00203-w. NPJ Biofilms Microbiomes. 2021. PMID: 33850153 Free PMC article.
-
Posttranslational protein modification in Archaea.Microbiol Mol Biol Rev. 2005 Sep;69(3):393-425. doi: 10.1128/MMBR.69.3.393-425.2005. Microbiol Mol Biol Rev. 2005. PMID: 16148304 Free PMC article. Review.
-
Regulation of receptor protein-tyrosine phosphatase alpha by oxidative stress.EMBO J. 2002 Feb 15;21(4):493-503. doi: 10.1093/emboj/21.4.493. EMBO J. 2002. PMID: 11847098 Free PMC article.
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
LinkOut - more resources
Full Text Sources
Molecular Biology Databases