Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Jun 22;276(25):22868-74.
doi: 10.1074/jbc.M100118200. Epub 2001 Apr 11.

Calcium transients in 1B5 myotubes lacking ryanodine receptors are related to inositol trisphosphate receptors

Affiliations
Free article

Calcium transients in 1B5 myotubes lacking ryanodine receptors are related to inositol trisphosphate receptors

M Estrada et al. J Biol Chem. .
Free article

Abstract

Potassium depolarization of skeletal myotubes evokes slow calcium waves that are unrelated to contraction and involve the cell nucleus (Jaimovich, E., Reyes, R., Liberona, J. L., and Powell, J. A. (2000) Am. J. Physiol. 278, C998-C1010). Studies were done in both the 1B5 (Ry53-/-) murine "dyspedic" myoblast cell line, which does not express any ryanodine receptor isoforms (Moore, R. A., Nguyen, H., Galceran, J., Pessah, I. N., and Allen, P. D. (1998) J. Cell Biol. 140, 843-851), and C(2)C(12) cells, a myoblast cell line that expresses all three isoforms. Although 1B5 cells lack ryanodine binding, they bind tritiated inositol (1,4,5)-trisphosphate. Both type 1 and type 3 inositol trisphosphate receptors were immuno-located in the nuclei of both cell types and were visualized by Western blot analysis. After stimulation with 47 mm K(+), inositol trisphosphate mass raised transiently in both cell types. Both fast calcium increase and slow propagated calcium signals were seen in C(2)C(12) myotubes. However, 1B5 myotubes (as well as ryanodine-treated C(2)C(12) myotubes) displayed only a long-lasting, non-propagating calcium increase, particularly evident in the nuclei. Calcium signals in 1B5 myotubes were almost completely blocked by inhibitors of the inositol trisphosphate pathway: U73122, 2-aminoethoxydiphenyl borate, or xestospongin C. Results support the hypothesis that inositol trisphosphate mediates slow calcium signals in muscle cell ryanodine receptors, having a role in their time course and propagation.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources