Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Mar;39(1):57-66.
doi: 10.3347/kjp.2001.39.1.57.

Molecular cloning and characterization of an antigenic protein with a repeating region from Clonorchis sinensis

Affiliations

Molecular cloning and characterization of an antigenic protein with a repeating region from Clonorchis sinensis

T Y Kim et al. Korean J Parasitol. 2001 Mar.

Abstract

In the course of immunoscreening of Clonorchis sinensis cDNA library, a cDNA CsRP12 containing a tandem repeat was isolated. The cDNA CsRP12 encodes two putative peptides of open reading frames (ORFs) 1 and 2 (CsRP12-1 and -2). The repetitive region is composed of 15 repeats of 10 amino acids. Of the two putative peptides, CsRP12-1 was proline-rich and found to have homologues in several organisms. Recombinant proteins of the putative peptides were bacterially produced and purified by an affinity chromatography. Recombinant CsRP12-1 protein was recognized by sera of clonorchiasis patients and experimental rabbits, but recombinant CsRP12-2 was not. One of the putative peptide, CsRP12-1, is designated CsPRA, proline-rich antigen of C. sinensis. Both the C-termini of CsRP12-1 and -2 were bacterially produced and analysed to show no antigenicity. Recombinant CsPRA protein showed high sensitivity and specificity. In experimental rabbits, IgG antibodies to CsPRA was produced between 4 and 8 weeks after the infection and decreased thereafter over one year. These results indicate that CsPRA is equivalent to a natural protein and a useful antigenic protein for serodiagnosis of human clonorchiasis.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Partial cDNA and its deduced amino acid sequences of a clone, CsRP12, from Clonorchis sinensis. A stretch of bold characters represents a repetitive unit. An asterisk (*) indicates a translational termination codon. Oligonucleotide primers used for DNA sequencing are underlined.
Fig. 2
Fig. 2
multiple alignment of Clonorchis sinensis repetitive peptide, CsRP12-1, with surface proteins of animals. Residues identical to CsRP12-1 were shaded. A gap (-) was introduced for maximal alignment. Cs44, C. sinensis antigen 44 (Yong et al., 1998); XP2pre, Xenopus laevis skin secretory protein XP2 precursor (Hauser et al., 1992); CePro, Caenorhabditis elegans proline and glycine rich protein (Wilson et al., 1994); TcSA, Trypanosoma cruzi surface antigen (Buschiazzo et al., 1992); LdA2pre, Leishmania donovani amastigote-specific protein A2 precursor (Charest and Matlashewski, 1994); PfSAg, Plasmodium falciparum surface antigen protein precursor (Brown et al., 1987).
Fig. 3
Fig. 3
Purification of recombinant CsRP12-1 and -2 proteins. Recombinant proteins bacterially produced were charged in a denaturation condition onto Ni-NTA column and eluted with a buffer containing 250 mM imidazole. The recombinant proteins purified and deployed in SDS-polyacrylamide gel were detected by Coomassie blue staining (A) and immunoblotting with anti-Xpress antibody (B). Lane 1, induced bacterial lysate; lane 2, flow-through; lane 3, eluate.
Fig. 4
Fig. 4
Immunoblots of purified recombinant CsRP12-1 to helminth-infected patients' sera. A. Immunoblot against clonorchiasis patients' sera. B. Other helminth-infected patients' sera. Pw, paragonimiasis; Sp, sparganosis; Cy, cysticercosis; N, normal human sera; C, control by anti-Xpress antibody.
Fig. 5
Fig. 5
An immunoblot of recombinant CsRP12-1 protein to Clonorchis sinensis-infected rabbit sera.
Fig. 6
Fig. 6
Purification and antigenicity of bacterial recombinant C-terminus peptides of CsRP12. A. Purification of the recombinant proteins by Ni-NTA affinity chromatography. Lane 1, induced lysate; lane 2, pass-through fraction; lanes 3 and 4, buffers B and C, respectively; lanes 5, 6, 7 and 8, eluates with buffers C, D, E and F containing 250 mM imidazole, respectively. B. Immunolots against C. sinensis-infected patient sera. Lanes 1 to 7, clonorchiasis patients sera; lane 8, anti-RGS His antibody.

Similar articles

Cited by

References

    1. Altschul SF, Madden TL, Schaffer AA, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402. - PMC - PubMed
    1. Banic DM, de Oliveira-Ferreira J, Pratt-Riccio LR, et al. Immune response and lack of immune response to Plasmodium falciparum P126 antigen and its amino-terminal repeat in malaria-infected humans. Am J Trop Med Hyg. 1998;58:768–774. - PubMed
    1. Brosius J, Tiedge H. Reverse transcriptase: mediator of genomic plasticity. Virus Genes. 1995;11:163–179. - PubMed
    1. Brown H, Kemp DJ, Barzaga N, Brown GV, Anders RF, Coppel RL. Sequence variation in S-antigen genes of Plasmodium falciparum. Mol Biol Med. 1987;4:365–376. - PubMed
    1. Burns JM, Shreffler WG, Benson DR, Ghalib HW, Badaro R, Reed SG. Molecular characterization of a kinesin-related antigen of Leishmania chagasi that detects specific antibody in African and American visceral leishmaniasis. Proc Natl Acad Sci USA. 1993;90:775–779. - PMC - PubMed

Publication types

LinkOut - more resources