Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001:(91):117-41.
doi: 10.1007/978-3-0348-7781-7_7.

Temperature-dependent sex determination and gonadal differentiation in reptiles

Affiliations
Review

Temperature-dependent sex determination and gonadal differentiation in reptiles

C Pieau et al. EXS. 2001.

Abstract

In many reptile species, sexual differentiation of gonads is sensitive to temperature (temperature-dependent sex determination, TSD) during a critical period of embryonic development (thermosensitive period, TSP). Experiments carried out with different models including turtles, crocodilians and lizards have demonstrated the implication of estrogens and the key role played by aromatase (the enzyme complex that converts androgens to estrogens) in ovary differentiation during TSP and in maintenance of the ovarian structure after TSP. In some of these experiments, the occurrence of various degrees of gonadal intersexuality is related to weak differences in aromatase activity, suggesting subtle regulations of the aromatase gene at the transcription level. Temperature could intervene in these regulations. Studies presently under way deal with cloning (cDNAs) and expression (mRNAs) of genes that have been shown, or are expected, to be involved in gonadal formation and/or differentiation in mammals. Preliminary results show that homologues of the WT1, SF1, SOX9, DAX1 and AMH genes exist in TSD reptiles. However, the expression patterns of these genes during gonadal differentiation may be different between mammals and TSD reptiles and also between different reptile species. How these genes could interact with aromatase is being examined.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources