Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Apr;71(2):127-31.
doi: 10.1043/0003-3219(2001)071<0127:AFEMOA>2.0.CO;2.

A finite element model of apical force distribution from orthodontic tooth movement

Affiliations

A finite element model of apical force distribution from orthodontic tooth movement

D J Rudolph et al. Angle Orthod. 2001 Apr.

Abstract

This study was undertaken to determine the types of orthodontic forces that cause high stress at the root apex. A 3-dimensional finite element model of a maxillary central incisor, its periodontal ligament (PDL), and alveolar bone was constructed on the basis of average anatomic morphology. The maxillary central incisor was chosen for study because it is one of the teeth at greatest risk for apical root resorption. The material properties of enamel, dentin, PDL, and bone and 5 different load systems (tipping, intrusion, extrusion, bodily movement, and rotational force) were tested. The finite element analysis showed that purely intrusive, extrusive, and rotational forces had stresses concentrated at the apex of the root. The principal stress from a tipping force was located at the alveolar crest. For bodily movement, stress was distributed throughout the PDL; however, it was concentrated more at the alveolar crest. We conclude that intrusive, extrusive, and rotational forces produce more stress at the apex. Bodily movement and tipping forces concentrate forces at the alveolar crest, not at the apex.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources