Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Apr 20;898(2):195-203.
doi: 10.1016/s0006-8993(01)02143-6.

Regulation of sensorimotor gating in rats by hippocampal NMDA: anatomical localization

Affiliations

Regulation of sensorimotor gating in rats by hippocampal NMDA: anatomical localization

N R Swerdlow et al. Brain Res. .

Abstract

Prepulse inhibition (PPI) of the startle reflex is a measure of sensorimotor gating that is reduced in humans with certain neuropsychiatric disorders, including schizophrenia, and in rats after manipulations of limbic cortico-striato-pallido-pontine circuitry. We have reported that PPI is reduced after specific manipulations of the hippocampal complex (HPC) in rats, but the mechanisms for these effects remain poorly understood. For example, dopaminergic substrates clearly regulate PPI, but the PPI-disruptive effects of intra-HPC carbachol or NMDA are not reversed by D2 receptor antagonists. This study examined the anatomical specificity within the hippocampal complex of the PPI-disruptive effects of NMDA infusion. Startle magnitude and PPI were assessed after acute bilateral infusion of NMDA (0, 0.4 or 0.8 microg) into the dorsal subiculum (DS), region CA1, the ventral subiculum (VS), the rostral entorhinal cortex (ECr) and the caudal entorhinal cortex (ECc). A dorsal-ventral gradient for NMDA effects was observed, with a dose-dependent disruption of PPI after NMDA infusion into the VS or EC, but not the DS, and with intermediate level effects observed after NMDA infusion into CA1. A second set of studies confirmed that the failure of NMDA effects in the DS did not reflect site-related differences in startle magnitude or baseline levels of PPI. These findings demonstrate the importance of the ventral, but not the dorsal HPC, in the glutamatergic regulation of PPI.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources