Interactions within the coiled-coil domain of RetGC-1 guanylyl cyclase are optimized for regulation rather than for high affinity
- PMID: 11306565
- DOI: 10.1074/jbc.M010495200
Interactions within the coiled-coil domain of RetGC-1 guanylyl cyclase are optimized for regulation rather than for high affinity
Abstract
RetGC-1, a member of the membrane guanylyl cyclase family of proteins, is regulated in photoreceptor cells by a Ca(2+)-binding protein known as GCAP-1. Proper regulation of RetGC-1 is essential in photoreceptor cells for normal light adaptation and recovery to the dark state. In this study we show that cGMP synthesis by RetGC-1 requires dimerization, because critical functions in the catalytic site must be provided by each of the two polypeptide chains of the dimer. We also show that an intact alpha-helical coiled-coil structure is required to provide dimerization strength for the catalytic domain of RetGC-1. However, the dimerization strength of this domain must be precisely optimized for proper regulation by GCAP-1. We found that Arg(838) within the dimerization domain establishes the Ca(2+) sensitivity of RetGC-1 by determining the strength of the coiled-coil interaction. Arg(838) substitutions dominantly enhance cGMP synthesis even at the highest Ca(2+) concentrations that occur in normal dark-adapted photoreceptor cells. Molecular dynamics simulations suggest that Arg(838) substitutions disrupt a small network of salt bridges to allow an abnormal extension of coiled-coil structure. Substitutions at Arg(838) were first identified by linkage to the retinal degenerative disease, autosomal dominant cone rod dystrophy (adCORD). Consistent with the characteristics of this disease, the Arg(838)-substituted RetGC-1 mutants exhibit a dominant biochemical phenotype. We propose that accelerated cGMP synthesis in humans with adCORD is the primary cause of cone-rod degeneration.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous
