Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Mar-Apr;55(2):65-86.

Retention of water-borne bacteria by membrane filters. Part I: Bacterial challenge tests on 0.2 and 0.22 micron rated filters

Affiliations
  • PMID: 11310322

Retention of water-borne bacteria by membrane filters. Part I: Bacterial challenge tests on 0.2 and 0.22 micron rated filters

S Sundaram et al. PDA J Pharm Sci Technol. 2001 Mar-Apr.

Abstract

The results of bacterial challenge tests conducted on several 0.2 and 0.22 micron rated "sterilizing grade" filter cartridge types with bacteria from a natural water source are presented. Eight different 0.2/0.22 micron rated "sterilizing grade" filter types from four different filter manufacturers, claimed to be capable of retaining Brevundimonas diminuta at a challenge level of 10(7) CFU/cm2, were tested. The filters tested included nylon 6.6 and polyamide filters from two manufacturers, modified or hydrophilic PVDF filters from two manufacturers, modified or asymmetric PES filters from three manufacturers, and cellulose acetate filters from a single manufacturer. Consistent bacterial penetration was observed, over the 18-24 h challenge period, for all twenty-five integral 0.2 and 0.22 micron rated filter cartridges tested, at challenge levels of about 10(1)-10(4) CFU/cm2, indicating that natural waterborne bacteria were more penetrative than B. diminuta. The observed penetration was thus qualitatively independent of filter media type or manufacturer. These results add to the growing body of evidence that shows 0.2 and 0.22 micron rated filters may not remove all microorganisms under all conditions. These results further establish that bacterial penetration of 0.2/0.22 micron rated filters is not limited just to (1) specific membrane types, or (2) extended duration challenges (>> 24 h), or (3) extremely high challenge levels, or (4) bacteria that can only exist in a penetrative state in an artificial laboratory setting.

PubMed Disclaimer

Comment in