Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 May;22(9):883-9.
doi: 10.1016/s0142-9612(00)00211-8.

A new approach based on injection moulding to produce biodegradable starch-based polymeric scaffolds: morphology, mechanical and degradation behaviour

Affiliations
Free article

A new approach based on injection moulding to produce biodegradable starch-based polymeric scaffolds: morphology, mechanical and degradation behaviour

M E Gomes et al. Biomaterials. 2001 May.
Free article

Abstract

One of the present challenges in polymer scaffold processing is the fabrication of three-dimensional (3D) architectures with an adequate mechanical performance to be used in the tissue engineering of hard tissues. This paper describes a preliminary study on the development of a new method to produce biodegradable scaffolds from a range of corn-starch-based polymers. In some cases, hydroxlapatite was also used as a reinforcement of the biodegradable polymers. The developed methodology consists of a standard conventional injection moulding process, on which a solid blowing agent based on carboxylic acids is used to generate the foaming of the bulk of the moulded part. The proposed route allows for the production of scaffolds with a compact skin and a porous core, with promising mechanical properties. By using the developed method it is possible to manufacture biodegradable polymer scaffolds in an easy (melt-based processing) and reproducible manner. The scaffolds can be moulded into complex shapes, and the blowing additives do not affect the non-cytotoxic behaviour of the starch-based materials. The materials produced using this method were evaluated with respect to the morphology of the porous structure, and the respective mechanical properties and degradation behaviour. It was demonstrated that it is possible to obtain, by a standard melt based processing route, 3D scaffolds with complex shapes that exhibit an appropriate morphology, without decreasing significantly the mechanical properties of the materials. It is believed that the optimisation of the proposed processing methodology may lead to the production of scaffolds that might be used on the regeneration of load-bearing tissues.

PubMed Disclaimer

MeSH terms

LinkOut - more resources