Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001 Jun;4(3):247-53.
doi: 10.1016/s1369-5266(00)00168-0.

Carbon and nitrogen sensing and signaling in plants: emerging 'matrix effects'

Affiliations
Review

Carbon and nitrogen sensing and signaling in plants: emerging 'matrix effects'

G M Coruzzi et al. Curr Opin Plant Biol. 2001 Jun.

Abstract

Plants, like other organisms, have developed mechanisms that allow them to sense and respond to changes in levels of carbon and nitrogen metabolites. These mechanisms, in turn, regulate the expression of genes and the activities of proteins involved in C and N transport and metabolism, allowing plants to optimize the use of energy resources. Recent studies, which have involved molecular-genetic, genomic, and cell biological approaches, have begun to uncover the signals and components of C:N sensing and signaling mechanisms in plants. For sugar sensing, analysis of Arabidopsis mutants has revealed intersections with hormone and nitrogen signaling. For nitrogen sensing/signaling, recent progress has identified transcriptional and posttranslational mechanisms of regulation. In all, a complex picture is emerging in which C:N signaling systems are subject to a 'matrix effect' in which downstream responses are dependent upon cell-type, developmental, metabolic, and/or environmental conditions.

PubMed Disclaimer

MeSH terms

LinkOut - more resources