Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Apr;30(4):193-209.
doi: 10.1006/mpat.2000.0424.

Structure-function analysis of Yersinia pestis YopM's interaction with alpha-thrombin to rule on its significance in systemic plague and to model YopM's mechanism of binding host proteins

Affiliations

Structure-function analysis of Yersinia pestis YopM's interaction with alpha-thrombin to rule on its significance in systemic plague and to model YopM's mechanism of binding host proteins

J Hines et al. Microb Pathog. 2001 Apr.

Abstract

The plague virulence protein YopM of Yersinia pestis KIM5 belongs to the large family of leucine-rich repeat (LRR) proteins. The only activity demonstrated so far for YopM is thrombin-binding, which could be a function of the small amount of YopM that is released into surrounding tissues by the bacteria. This study combined deletional and mutational analysis, chemical crosslinking assays, and in vitro functional tests with molecular modelling to identify key features of YopM necessary for interacting with thrombin. Two Y. pestis strains expressing YopM variants that differed in thrombin binding were used to assess the importance of thrombin-binding for lethality of plague. Both strains suffered a similar decrease in virulence by three orders of magnitude, indicating that thrombin-binding per se was not the major deficiency for lethality in the systemic disease model employed. It remains possible that extracellular YopM could contribute to plague pathology and to early events in peripheral tissues. The structural studies provided a model for how YopM may interact with thrombin and an insight into how YopM's LRR structure may assemble distinct regions for binding different targets.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources