Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2001 May 1;166(9):5398-406.
doi: 10.4049/jimmunol.166.9.5398.

Mechanism of immune dysfunction in cancer mediated by immature Gr-1+ myeloid cells

Affiliations
Comparative Study

Mechanism of immune dysfunction in cancer mediated by immature Gr-1+ myeloid cells

D I Gabrilovich et al. J Immunol. .

Abstract

The mechanism of tumor-associated T cell dysfunction remains an unresolved problem of tumor immunology. Development of T cell defects in tumor-bearing hosts are often associated with increased production of immature myeloid cells. In tumor-bearing mice, these immature myeloid cells are represented by a population of Gr-1(+) cells. In this study we investigated an effect of these cells on T cell function. Gr-1(+) cells were isolated from MethA sarcoma or C3 tumor-bearing mice using cell sorting. These Gr-1(+) cells expressed myeloid cell marker CD11b and MHC class I molecules, but they lacked expression of MHC class II molecules. Tumor-induced Gr-1(+) cells did not affect T cell responses to Con A and to a peptide presented by MHC class II. In sharp contrast, Gr-1(+) cells completely blocked T cell response to a peptide presented by MHC class I in vitro and in vivo. Block of the specific MHC class I molecules on the surface of Gr-1(+) cells completely abrogated the observed effects of these cells. Thus, immature myeloid cells specifically inhibited CD8-mediated Ag-specific T cell response, but not CD4-mediated T cell response. Differentiation of Gr-1(+) cells in the presence of growth factors and all-trans retinoic acid completely eliminated inhibitory potential of these cells. This may suggest a new approach to cancer treatment.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources