Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 May 1;30(9):1008-18.
doi: 10.1016/s0891-5849(01)00493-2.

Cellular titration of apoptosis with steady state concentrations of H(2)O(2): submicromolar levels of H(2)O(2) induce apoptosis through Fenton chemistry independent of the cellular thiol state

Affiliations

Cellular titration of apoptosis with steady state concentrations of H(2)O(2): submicromolar levels of H(2)O(2) induce apoptosis through Fenton chemistry independent of the cellular thiol state

F Antunes et al. Free Radic Biol Med. .

Abstract

Apoptosis was studied under conditions that mimic the steady state of H(2)O(2) in vivo. This is at variance with previous studies involving a bolus addition of H(2)O(2), a procedure that disrupts the cellular homeostasis. The results allowed us to define three phases for H(2)O(2)-induced apoptosis in Jurkat T-cells with reference to cytosolic steady state concentrations of H(2)O(2) [(H(2)O(2))(ss)]: (H(2)O(2))(ss) values below 0.7 microM elicited no effects; (H(2)O(2))(ss) approximately 0.7-3 microM induced apoptosis; and (H(2)O(2))(ss) > 3 microM yielded no additional apoptosis and a gradual shift towards necrosis as the mode of cell death were observed. H(2)O(2)-induced apoptosis was not affected by either BCNU, an inhibitor of glutathione reductase, or diamide, a compound that reacts both with low-molecular weight and protein thiols, or selenols. Glutathione depletion, accomplished by incubating cells either with buthionine sulfoximine or in cystine-free medium, rendered cells more sensitive to H(2)O(2)-induced apoptosis, but did not change the threshold and saturating concentrations of H(2)O(2) that induced apoptosis. Two unrelated metal chelators, desferrioxamine and dipyridyl, strongly protected against H(2)O(2)-induced apoptosis. It may be concluded that, under conditions of H(2)O(2) delivery that mimic in vivo situations, the oxidative event that triggers the induction of apoptosis by H(2)O(2) is a Fenton-type reaction and is independent of the thiol or selenium states of the cell.

PubMed Disclaimer

Publication types

LinkOut - more resources