Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 May 1;58(3):295-301.
doi: 10.1002/1097-4636(2001)58:3<295::aid-jbm1020>3.0.co;2-8.

A novel amorphous calcium phosphate polymer ceramic for bone repair: I. Synthesis and characterization

Affiliations

A novel amorphous calcium phosphate polymer ceramic for bone repair: I. Synthesis and characterization

A M Ambrosio et al. J Biomed Mater Res. .

Abstract

Traditional materials for bone repair or replacements such as autografts and allografts have a limited supply and other complications. Thus, alternative materials need to be explored. Three-dimensional, porous composites prepared from bioresorbable polymers and hydroxyapatite or other calcium phosphate ceramics are promising materials for the repair or replacement of diseased or damaged bone. However, in many cases the ceramic component of these composites is crystalline in nature, while bone apatite is made of a poorly crystalline, carbonated phosphate system. In this study, we synthesized a noncrystalline, carbonated calcium phosphate ceramic by carrying out the reaction within bioresorbable PLAGA microspheres using a modified emulsion/solvent evaporation technique, making each individual microsphere a composite. Sintering the composite microspheres together yielded a bioresorbable, porous, 3-dimensional scaffold that may be ideal for tissue ingrowth, making this composite scaffold potentially suitable for bone repair applications.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources