Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Mar;51(Pt 2):581-588.
doi: 10.1099/00207713-51-2-581.

Geobacter hydrogenophilus, Geobacter chapellei and Geobacter grbiciae, three new, strictly anaerobic, dissimilatory Fe(III)-reducers

Geobacter hydrogenophilus, Geobacter chapellei and Geobacter grbiciae, three new, strictly anaerobic, dissimilatory Fe(III)-reducers

J D Coates et al. Int J Syst Evol Microbiol. 2001 Mar.

Abstract

Recent studies on the diversity and ubiquity of Fe(III)-reducing organisms in different environments led to the isolation and identification of four new dissimilatory Fe(III)-reducers (strains H-2T, 172T, TACP-2T and TACP-5). All four isolates are non-motile, Gram-negative, freshwater, mesophilic, strict anaerobes with morphology identical to that of Geobacter metallireducens strain GS-15T. Analysis of the 16S rRNA sequences indicated that the new isolates belong to the genus Geobacter, in the delta-Proteobacteria. Significant differences in phenotypic characteristics, DNA-DNA homology and G+C content indicated that the four isolates represent three new species of the genus. The names Geobacter hydrogenophilus sp. nov. (strain H-2T), Geobacter chapellei sp. nov. (strain 172T) and Geobacter grbiciae sp. nov. (strains TACP-2T and TACP-5) are proposed. Geobacter hydrogenophilus and Geobacter chapellei were isolated from a petroleum-contaminated aquifer and a pristine, deep, subsurface aquifer, respectively. Geobacter grbiciae was isolated from aquatic sediments. All of the isolates can obtain energy for growth by coupling the oxidation of acetate to the reduction of Fe(III). The four isolates also coupled Fe(III) reduction to the oxidation of other simple, volatile fatty acids. In addition, Geobacter hydrogenophilus and Geobacter grbiciae were able to oxidize aromatic compounds such as benzoate, whilst Geobacter grbiciae was also able to use the monoaromatic hydrocarbon toluene.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources