Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Apr 27;283(1):6-11.
doi: 10.1006/bbrc.2001.4733.

Time-dependent effects of a high-energy-yielding diet on the regulation of specific white adipose tissue genes

Affiliations
Free article

Time-dependent effects of a high-energy-yielding diet on the regulation of specific white adipose tissue genes

J Margareto et al. Biochem Biophys Res Commun. .
Free article

Abstract

White adipose tissue development is regulated by many factors, including the energy content of food and the genetic background. Nevertheless, little is known about possible differential effects of high-fat palatable diets when fed for short or long-time periods. Thus, the expression of certain genes involved with lipid metabolism (peroxisome proliferator-activated receptor gamma, PPARgamma2; retinoic receptors; fatty acid binding protein, aP2 and uncoupling proteins, UCP) may be affected by those dietary manipulations (high-energy-yielding diet and time duration of feeding). High-fat feeding for 8 days decreased mRNA UCP3 levels compared to control fed animals, while feeding for 30 days increased them over controls. Similar findings occurred for PPARgamma2 and aP2. Furthermore, statistically significant associations were found among PPARgamma2, aP2 and UCP3 mRNA levels. These data suggest a physiological time-dependent response seeking to prevent excessive fat deposition when animals are fed for short-term with a high amount of dietary fat, which was followed by an adaptive period to the high-energy content of diet throughout a coregulation among certain lipid metabolism related genes: PPARgamma2, aP2, UCP3.

PubMed Disclaimer

Publication types

MeSH terms