Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 May;45(5):817-26.
doi: 10.1002/mrm.1110.

Accurate phosphorus metabolite images of the human heart by 3D acquisition-weighted CSI

Affiliations
Free article

Accurate phosphorus metabolite images of the human heart by 3D acquisition-weighted CSI

R Pohmann et al. Magn Reson Med. 2001 May.
Free article

Abstract

Fourier imaging modalities suffer from significant signal contamination between adjacent voxels, especially when the spatial resolution is comparable to the size of the anatomical structures. This contamination can be positive or negative, depending on the spatial response function and the geometry of the object. Such a situation arises in human cardiac (31)P chemical shift imaging (CSI). Acquisition-weighted CSI reduces this contamination substantially, which is demonstrated by comparing conventional CSI to Hanning-weighted 3D (31)P-CSI experiments in 13 healthy volunteers at 2 T. The nominal spatial resolution and the total number of scans were identical for both experiments. The improved spatial response function of the acquisition-weighted experiment led to a significantly (P < 0.0001) higher myocardial PCr/ATP ratio (2.05 +/- 0.31, mean +/- SD, N = 33, corrected for saturation and blood contribution) compared to the conventional CSI experiment (1.60 +/- 0.46). This is explained by the absence of negative contamination from skeletal muscle, which also resulted in an increase of the observed SNR (from 5.4 +/- 1.4 to 7.2 +/- 1.4 for ATP). With acquisition-weighted CSI, metabolic images with a nominal resolution of 16 ml could be obtained in a measurement time of 30 min. After correction for the inhomogeneous B(1) field of the surface coil, these images show uniform ATP distribution in the entire myocardium, including the posterior wall.

PubMed Disclaimer

Publication types

LinkOut - more resources