Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Apr;109(4):1616-30.
doi: 10.1121/1.1333420.

Intraglottal pressure profiles for a symmetric and oblique glottis with a divergence angle of 10 degrees

Affiliations

Intraglottal pressure profiles for a symmetric and oblique glottis with a divergence angle of 10 degrees

R C Scherer et al. J Acoust Soc Am. 2001 Apr.

Abstract

Human phonation does not always involve symmetric motions of the two vocal folds. Asymmetric motions can create slanted or oblique glottal angles. This study reports intraglottal pressure profiles for a Plexiglas model of the larynx with a glottis having a 10-degree divergence angle and either a symmetric orientation or an oblique angle of 15 degrees. For the oblique glottis, one side was divergent and the other convergent. The vocal fold surfaces had 14 pressure taps. The minimal glottal diameter was held constant at 0.04 cm. Results indicated that for either the symmetric or oblique case, the pressure profiles were different on the two sides of the glottis except for the symmetric geometry for a transglottal pressure of 3 cm H2O. For the symmetric case, flow separation created lower pressures on the side where the flow stayed attached to the wall, and the largest pressure differences between the two sides of the channel were 5%-6% of the transglottal pressure. For the oblique case, pressures were lower on the divergent glottal side near the glottal entry and exit, and the cross-channel pressures at the glottis entrance differed by 27% of the transglottal pressure. The empirical pressure distributions were supported by computational results. The observed aerodynamic asymmetries could be a factor contributing to normal jitter values and differences in vocal fold phasing.

PubMed Disclaimer

Publication types

LinkOut - more resources