Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Jun 29;276(26):23624-31.
doi: 10.1074/jbc.M102496200. Epub 2001 Apr 26.

Identification of a simian immunodeficiency virus reverse transcriptase variant with enhanced replicational fidelity in the late stage of viral infection

Affiliations
Free article

Identification of a simian immunodeficiency virus reverse transcriptase variant with enhanced replicational fidelity in the late stage of viral infection

T L Diamond et al. J Biol Chem. .
Free article

Abstract

Genomic hypermutation of human and simian immunodeficiency viruses (HIV and SIV) enables these viruses to adapt and escape from various types of anti-viral selection by altering the molecular properties of viral gene products. In this study, we examined whether the biochemical and catalytic properties of SIV DNA polymerases (reverse transcriptases; RT) can change during the course of viral infection. For this test, we analyzed RTs obtained from two SIV clones, SIVMNE CL8 and SIVMNE 170. SIVMNE 170 was isolated during the late symptomatic phase of infection with the parental strain, SIVMNE CL8. We found these two RTs have identical DNA polymerase specific activities and kinetics with three different DNA and RNA templates. In addition, the processivity of these two SIV RT proteins were also similar. However, as demonstrated by a misincorporation assay, the SIVMNE 170 RT showed much higher fidelity than SIVMNE CL8. The fidelity difference between these two SIV RTs was also confirmed by a steady state kinetic fidelity assay. These findings suggest that the fidelity of lentiviral RTs may change during the course of viral infection, possibly in response to alterations of host anti-viral immune capability. In addition, our sequence analysis of these two RT genes proposes possible structural strategies that the virus may employ to alter RT fidelity.

PubMed Disclaimer

Publication types

Associated data

LinkOut - more resources