Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Feb 13;40(6):1510-7.
doi: 10.1021/bi002449a.

Formation of a new buried charge drives a large-amplitude protein quake in photoreceptor activation

Affiliations

Formation of a new buried charge drives a large-amplitude protein quake in photoreceptor activation

A Xie et al. Biochemistry. .

Abstract

Photoactive yellow protein (PYP) is a eubacterial photoreceptor and a structural prototype of the PAS domain superfamily of receptor and regulatory proteins. We investigate the activation mechanism of PYP using time-resolved Fourier transform infrared (FTIR) spectroscopy. Our data provide structural, kinetic, and energetic evidence that the putative signaling state of PYP is formed during a large-amplitude protein quake that is driven by the formation of a new buried charge, COO(-) of the conserved Glu46, in a highly hydrophobic pocket at the active site. A protein quake is a process consisting of global conformational changes that are triggered and driven by a local structural "fault". We show that large, global structural changes take place after Glu46 ionization via intramolecular proton transfer to the anionic p-coumarate chromophore, and are suppressed by the absence of COO(-) formation in the E46Q mutant. Our results demonstrate the significance of buried charge formation in photoreceptor activation. This mechanism may serve as one of the general themes in activation of a range of receptor proteins. In addition, we report the results of time-resolved FTIR spectroscopy of PYP crystals. The direct comparison of time-resolved FTIR spectroscopic data of PYP in aqueous solution and in crystals reveals that the structure of the putative signaling state is not developed in P6(3) crystals. Therefore, when the structural developments during the functional process of a protein are experimentally determined to be very different in crystals and solutions, one must be cautious in drawing conclusions regarding the functional mechanism of proteins based on time-resolved X-ray crystallography.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources