Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Feb 13;40(6):1567-76.
doi: 10.1021/bi002249z.

Crystal structure of maleylacetoacetate isomerase/glutathione transferase zeta reveals the molecular basis for its remarkable catalytic promiscuity

Affiliations

Crystal structure of maleylacetoacetate isomerase/glutathione transferase zeta reveals the molecular basis for its remarkable catalytic promiscuity

G Polekhina et al. Biochemistry. .

Abstract

Maleylacetoacetate isomerase (MAAI), a key enzyme in the metabolic degradation of phenylalanine and tyrosine, catalyzes the glutathione-dependent isomerization of maleylacetoacetate to fumarylacetoacetate. Deficiencies in enzymes along the degradation pathway lead to serious diseases including phenylketonuria, alkaptonuria, and the fatal disease, hereditary tyrosinemia type I. The structure of MAAI might prove useful in the design of inhibitors that could be used in the clinical management of the latter disease. Here we report the crystal structure of human MAAI at 1.9 A resolution in complex with glutathione and a sulfate ion which mimics substrate binding. The enzyme has previously been shown to belong to the zeta class of the glutathione S-transferase (GST) superfamily based on limited sequence similarity. The structure of MAAI shows that it does adopt the GST canonical fold but with a number of functionally important differences. The structure provides insights into the molecular bases of the remarkable array of different reactions the enzyme is capable of performing including isomerization, oxygenation, dehalogenation, peroxidation, and transferase activity.

PubMed Disclaimer

Publication types

Associated data