Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000:32 Spring:73-87.
doi: 10.1385/cbb:32:1-3:73.

Peroxisomal lipid degradation via beta- and alpha-oxidation in mammals

Affiliations
Review

Peroxisomal lipid degradation via beta- and alpha-oxidation in mammals

G P Mannaerts et al. Cell Biochem Biophys. 2000.

Abstract

Peroxisomal beta-oxidation is involved in the degradation of long chain and very long chain fatty acyl-(coenzyme A)CoAs, long chain dicarboxylyl-CoAs, the CoA esters of eicosanoids, 2-methyl-branched fatty acyl-CoAs (e.g. pristanoyl-CoA), and the CoA esters of the bile acid intermediates di- and trihydroxycoprostanic acids (side chain of cholesterol). In the rat, straight chain acyl-CoAs (including the CoA esters of dicarboxylic fatty acids and eicosanoids) are beta-oxidized via palmitoyl-CoA oxidase, multifunctional protein-1 (which displays 2-enoyl-CoA hydratase and L-3-hydroxyacyl-CoA dehydrogenase activities) and peroxisomal thiolase. 2-Methyl-branched acyl-CoAs are degraded via pristanoyl-CoA oxidase, multifunctional protein-2 (MFP-2) (which displays 2-enoyl-CoA hydratase and D-3-hydroxyacyl-CoA dehydrogenase activities) and sterol carrier protein-X (SCPX; displaying 2-methyl-3-oxoacyl-CoA thiolase activity). The side chain of the bile acid intermediates is shortened via one cycle of beta-oxidation catalyzed by trihydroxycoprostanoyl-CoA oxidase, MFP-2 and SCPX. In the human, straight chain acyl-CoAs are oxidized via palmitoyl-CoA oxidase, multifunctional protein-1, and peroxisomal thiolase, as is the case in the rat. The CoA esters of 2-methyl-branched acyl-CoAs and the bile acid intermediates, which also possess a 2-methyl substitution in their side chain, are shortened via branched chain acyl-CoA oxidase (which is the human homolog of trihydroxycoprostanoyl-CoA oxidase), multifunctional protein-2, and SCPX. The rat and the human enzymes have been purified, cloned, and kinetically and stereochemically characterized. 3-Methyl-branched fatty acids such as phytanic acid are not directly beta-oxidizable because of the position of the methyl-branch. They are first shortened by one carbon atom through the a-oxidation process to a 2-methyl-branched fatty acid (pristanic acid in the case of phytanic acid), which is then degraded via peroxisomal beta-oxidation. In the human and the rat, alpha-oxidation is catalyzed by an acyl-CoA synthetase (producing a 3-methylacyl-CoA), a 3-methylacyl-CoA 2-hydroxylase (resulting in a 2-hydroxy-3-methylacyl-CoA), and a 2-hydroxy-3-methylacyl-CoA lyase that cleaves the 2-hydroxy-3-methylacyl-CoA into a 2-methyl-branched fatty aldehyde and formyl-CoA. The fatty aldehyde is dehydrogenated by an aldehyde dehydrogenase to a 2-methyl-branched fatty acid while formyl-CoA is hydrolyzed to formate, which is then converted to CO2. The activation, hydroxylation and cleavage reactions, and the hydrolysis of formyl-CoA are performed by peroxisomal enzymes; the aldehyde dehydrogenation remains to be localized whereas the conversion of formate to CO2 occurs mainly in the cytosol.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources