Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Jun 1;61(11):1401-8.
doi: 10.1016/s0006-2952(01)00627-x.

Collateral sensitivity to gemcitabine (2',2'-difluorodeoxycytidine) and cytosine arabinoside of daunorubicin- and VM-26-resistant variants of human small cell lung cancer cell lines

Affiliations

Collateral sensitivity to gemcitabine (2',2'-difluorodeoxycytidine) and cytosine arabinoside of daunorubicin- and VM-26-resistant variants of human small cell lung cancer cell lines

A M Bergman et al. Biochem Pharmacol. .

Abstract

Multidrug resistance (MDR), characterized by a cross-resistance to many natural toxin-related compounds, may be caused either by overexpression of a drug efflux pump such as P-glycoprotein, (P-gP), multidrug resistance proteins MRP1-3, or BCRP/MXR or, in the case of DNA topoisomerase II active drugs, by a decrease in the enzymatic activity of the target molecule termed altered topoisomerase MDR (at-MDR). However, human small cell lung carcinoma (SCLC) cell lines showed a collateral sensitivity to 2',2'-difluorodeoxycytidine (gemcitabine, dFdC) and 1-beta-D-arabinofuranosylcytosine (ara-C). H69/DAU, a daunorubicin (DAU)-resistant variant of H69 with a P-gP overexpression, and NYH/VM, a VM-26 (teniposide)-resistant variant of NYH with an at-MDR, were both 2-fold more sensitive to gemcitabine and 7- and 2-fold more sensitive to ara-C, respectively. MDR variants had a 4.3- and 2.0-fold increased activity of deoxycytidine kinase (dCK), respectively. dCK catalyzes the first rate-limiting activation step of both gemcitabine and ara-C. In addition, deoxycytidine deaminase, responsible for inactivation of dFdC and ara-C, was 9.0-fold lower in H69/DAU cells. The level of thymidine kinase 2, a mitochondrial enzyme that can also phosphorylate deoxycytidine and gemcitabine, was not significantly different between the variants. These differences most likely caused an increased accumulation of the active metabolites (dFdCTP, 2.1- and 1.6-fold in NYH/VM and H69/DAU cells, respectively) and of ara-CTP (1.3-fold in NYH/VM cells). Ara-CTP accumulation was not detectable in either H69 variant. The pools of all ribonucleoside and deoxyribonucleoside triphosphates were at least 3- to 4-fold higher in the NYH variants compared to the H69 variants; for dCTP and dGTP this difference was even larger. The higher ribonucleotide pools might explain the >10-fold higher accumulation of dFdCTP in NYH compared to H69 variants. Since dCTP is low, H69 cells might not need a high ara-CTP accumulation to inhibit DNA polymerase. This might be related to the lack of ara-CTP in H69 variants. In addition, the increased CTP, ATP, and UTP pools in the MDR variants might explain the increased ara-CTP and dFdCTP accumulation. In conclusion, the MDR variants of the human SCLC cell lines were collaterally sensitive due to an increased dCK activity, and consequently an increased ara-CTP and dFdCTP accumulation.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources