Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Jul;7(3):205-212.
doi: 10.1016/s1353-8020(00)00059-6.

Cell implantation therapies for Parkinson's disease using neural stem, transgenic or xenogeneic donor cells

Affiliations

Cell implantation therapies for Parkinson's disease using neural stem, transgenic or xenogeneic donor cells

O Isacson et al. Parkinsonism Relat Disord. 2001 Jul.

Abstract

A new therapeutic neurological and neurosurgical methodology involves cell implantation into the living brain in order to replace intrinsic neuronal systems, that do not spontaneously regenerate after injury, such as the dopaminergic (DA) system affected in Parkinson's disease (PD) and aging. Current clinical data indicate proof of principle for this cell implantation therapy for PD. Furthermore, the disease process does not appear to negatively affect the transplanted cells, although the patient's endogenous DA system degeneration continues. However, the optimal cells for replacement, such as highly specialized human fetal dopaminergic cells capable of repairing an entire degenerated nigro-striatal system, cannot be reliably obtained or generated in sufficient numbers for a standardized medically effective intervention. Xenogeneic and transgenic cell sources of analogous DA cells have shown great utility in animal models and some promise in early pilot studies in PD patients. The cell implantation treatment discipline, using cell fate committed fetal allo- or xenogeneic dopamine neurons and glia, is currently complemented by research on potential stem cell derived DA neurons. Understanding the cell biological principles and developing methodology necessary to generate functional DA progenitors is currently our focus for obtaining DA cells in sufficient quantities for the unmet cell transplantation need for patients with PD and related disorders.

PubMed Disclaimer

LinkOut - more resources