Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Jul;7(3):243-246.
doi: 10.1016/s1353-8020(00)00064-x.

Fullerene-based antioxidants and neurodegenerative disorders

Affiliations

Fullerene-based antioxidants and neurodegenerative disorders

L L. Dugan et al. Parkinsonism Relat Disord. 2001 Jul.

Abstract

Water-soluble derivatives of buckminsterfullerene (C(60)) derivatives are a unique class of compounds with potent antioxidant properties. Studies on one class of these compounds, the malonic acid C(60) derivatives (carboxyfullerenes), indicated that they are capable of eliminating both superoxide anion and H(2)O(2), and were effective inhibitors of lipid peroxidation, as well. Carboxyfullerenes demonstrated robust neuroprotection against excitotoxic, apoptotic and metabolic insults in cortical cell cultures. They were also capable of rescuing mesencephalic dopaminergic neurons from both MPP(+) and 6-hydroxydopamine-induced degeneration. Although there is limited in vivo data on these compounds to date, we have previously reported that systemic administration of the C(3) carboxyfullerene isomer delayed motor deterioration and death in a mouse model of familial amyotrophic lateral sclerosis (FALS). Ongoing studies in other animal models of CNS disease states suggest that these novel antioxidants are potential neuroprotective agents for other neurodegenerative disorders, including Parkinson's disease.

PubMed Disclaimer

LinkOut - more resources