In vivo brain tumor demarcation using optical spectroscopy
- PMID: 11332035
- DOI: 10.1562/0031-8655(2001)073<0396:ivbtdu>2.0.co;2
In vivo brain tumor demarcation using optical spectroscopy
Abstract
The applicability of optical spectroscopy for intraoperative detection of brain tumors/tumor margins was investigated in a pilot clinical trial consisting of 26 brain tumor patients. The results of this clinical trial suggest that brain tumors and infiltrating tumor margins (ITM) can be effectively separated from normal brain tissues in vivo using combined autofluorescence and diffuse-reflectance spectroscopy. A two-step empirical discrimination algorithm based on autofluorescence and diffuse reflectance at 460 and 625 nm was developed. This algorithm yields a sensitivity and specificity of 100 and 76%, respectively, in differentiating ITM from normal brain tissues. Blood contamination was found to be a major obstacle that attenuates the accuracy of brain tumor demarcation using optical spectroscopy. Overall, this study indicates that optical spectroscopy has the potential to guide brain tumor resection intraoperatively with high sensitivity.
Similar articles
-
Brain tumor demarcation using optical spectroscopy; an in vitro study.J Biomed Opt. 2000 Apr;5(2):214-20. doi: 10.1117/1.429989. J Biomed Opt. 2000. PMID: 10938786
-
Brain tumor demarcation by applying a LAMSTAR neural network to spectroscopy data.Neurol Res. 2004 Sep;26(6):613-21. doi: 10.1179/016164104225017802. Neurol Res. 2004. PMID: 15327750
-
Intraoperative optical spectroscopy identifies infiltrating glioma margins with high sensitivity.Neurosurgery. 2005 Oct;57(4 Suppl):382-91; discussion 382-91. doi: 10.1227/01.neu.000176855.39826.2d. Neurosurgery. 2005. PMID: 16234690 Clinical Trial.
-
Enhanced optical imaging of human gliomas and tumor margins.Neurosurgery. 1996 Feb;38(2):308-17. doi: 10.1097/00006123-199602000-00015. Neurosurgery. 1996. PMID: 8869058 Review.
-
In vivo bio-imaging using chlorotoxin-based conjugates.Curr Pharm Des. 2011 Dec;17(38):4362-71. doi: 10.2174/138161211798999375. Curr Pharm Des. 2011. PMID: 22204434 Free PMC article. Review.
Cited by
-
Development of a modular fluorescence overlay tissue imaging system for wide-field intraoperative surgical guidance.J Med Imaging (Bellingham). 2018 Apr;5(2):021220. doi: 10.1117/1.JMI.5.2.021220. Epub 2018 Mar 2. J Med Imaging (Bellingham). 2018. PMID: 29531968 Free PMC article.
-
Optical Methods for Brain Tumor Detection: A Systematic Review.J Clin Med. 2024 May 2;13(9):2676. doi: 10.3390/jcm13092676. J Clin Med. 2024. PMID: 38731204 Free PMC article. Review.
-
In vivo reflectance confocal microscopy of shave biopsy wounds: feasibility of intraoperative mapping of cancer margins.Br J Dermatol. 2010 Dec;163(6):1218-28. doi: 10.1111/j.1365-2133.2010.10063.x. Br J Dermatol. 2010. PMID: 20874785 Free PMC article.
-
Fluorescence lifetime imaging microscopy for brain tumor image-guided surgery.J Biomed Opt. 2010 Sep-Oct;15(5):056022. doi: 10.1117/1.3486612. J Biomed Opt. 2010. PMID: 21054116 Free PMC article.
-
Temporal profiles and 2-dimensional oxy-, deoxy-, and total-hemoglobin somatosensory maps in rat versus mouse cortex.Neuroimage. 2007;37 Suppl 1(Suppl 1):S27-36. doi: 10.1016/j.neuroimage.2007.04.063. Epub 2007 May 21. Neuroimage. 2007. PMID: 17574868 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical