Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001 Mar;15(1):49-59.
doi: 10.1054/blre.2001.0150.

The detection and significance of chromosomal abnormalities in childhood acute lymphoblastic leukaemia

Affiliations
Review

The detection and significance of chromosomal abnormalities in childhood acute lymphoblastic leukaemia

C J Harrison. Blood Rev. 2001 Mar.

Abstract

In childhood acute lymphoblastic leukaemia (ALL), cytogenetics plays an essential role in diagnosis and prediction of outcome. Conventional cytogenetic analysis, complemented by fluorescence in situ hybridization (FISH), is highly effective in the accurate detection of chromosomal abnormalities. For the precise identification of specific genetic changes, molecular techniques may be applied. Chromosomal changes in ALL may be of structural or numerical type. A large number of established structural chromosomal rearrangements have now been described for which the genetic alterations and effect on prognosis are well known. These include t(9;22)(q34;q11) and BCR/ABL, rearrangements of 11q23 involving MLL, t(12;21)(p13;q22) with the ETV6/AML1 fusion, t(1;19)(q23;p13) with E2A/PBX1, t(8;14)(q24;q32) and the immunoglobulin genes. Genetic changes associated with T ALL are also known, although their effect on outcome is less pronounced. Rare chromosomal abnormalities are continually being discovered in small patient subgroups leading to the identification of new ALL associated genetic changes. Alterations in chromosome number have a strong impact on outcome in childhood ALL. The association of a high hyperdiploid karyotype (51-65 chromosomes) with a good prognosis has been known for more than 20 years. Conversely, the loss of chromosomes in the near-haploid group (23-28 chromosomes) indicates a poor outcome. New methods of cancer classification involving gene expression profiling may eventually supercede cytogenetic analysis in the diagnosis and prediction of outcome in leukaemia. It is more likely that they will be used in a complementary approach alongside cytogenetic, FISH and molecular analysis to guide patient management in childhood ALL.

PubMed Disclaimer

MeSH terms

LinkOut - more resources