Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 May;50(5):1110-8.
doi: 10.2337/diabetes.50.5.1110.

Liver-specific igf-1 gene deletion leads to muscle insulin insensitivity

Affiliations

Liver-specific igf-1 gene deletion leads to muscle insulin insensitivity

S Yakar et al. Diabetes. 2001 May.

Abstract

Insulin and insulin-like growth factors (IGFs) mediate a variety of signals involved in mammalian development and metabolism. To study the metabolic consequences of IGF-I deficiency, we used the liver IGF-I-deficient (LID) mouse model. The LID mice show a marked reduction (approximately 75%) in circulating IGF-I and elevated growth hormone (GH) levels. Interestingly, LID mice show a fourfold increase in serum insulin levels (2.2 vs. 0.6 ng/ml in control mice) and abnormal glucose clearance after insulin injection. Fasting blood glucose levels and those after a glucose tolerance test were similar between the LID mice and their control littermates. Thus, the high levels of circulating insulin enable the LID mice to maintain normoglycemia in the presence of apparent insulin insensitivity. Insulin-induced autophosphorylation of the insulin receptor and tyrosine phosphorylation of insulin receptor substrate (IRS)-1 were absent in muscle, but were normal in liver and white adipose tissue of the LID mice. In contrast, IGF-I-induced autophosphorylation of its cognate receptor and phosphorylation of IRS-1 were normal in muscle of LID mice. Thus, the insulin insensitivity seen in the LID mice is muscle specific. Recombinant human IGF-I treatment of the LID mice caused a reduction in insulin levels and an increase in insulin sensitivity. Treatment of the LID mice with GH-releasing hormone antagonist, which reduces GH levels, also increased insulin sensitivity. These data provide evidence of the role of circulating IGF-I as an important component of overall insulin action in peripheral tissues.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms