Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Apr 20;418(1-2):117-25.
doi: 10.1016/s0014-2999(01)00940-2.

Cannabinoid inhibition of capsaicin-sensitive sensory neurotransmission in the rat mesenteric arterial bed

Affiliations

Cannabinoid inhibition of capsaicin-sensitive sensory neurotransmission in the rat mesenteric arterial bed

V Ralevic et al. Eur J Pharmacol. .

Abstract

The present study investigated whether cannabinoids can modulate neurotransmission mediated by capsaicin-sensitive sensory nerves in the rat isolated mesenteric arterial bed. Sensory neurogenic vasorelaxation mediated by electrical field stimulation was concentration-dependently attenuated by HU210 (0.1-3 microM), a cannabinoid receptor agonist (from 62+/-8.3% to 6+/-2.1% at 3 microM HU210). HU210 had no effect on relaxation to exogenous calcitonin gene-related peptide, indicating a prejunctional action. The action of HU210 (1 microM) was not affected by LY320135 (1 microM) or SR144528 (1 microM), cannabinoid CB(1) and CB(2) receptor antagonists, respectively. SR141716A (0.01-1 microM), a cannabinoid CB(1) receptor antagonist, concentration-dependently augmented vasorelaxation to electrical field stimulation, but had no effect on responses to calcitonin gene-related peptide and capsaicin, indicating a possible role of endogenous cannabinoids in sensory neurotransmission in rat mesenteric arteries. These data show that the cannabinoid receptor agonist HU210 inhibits prejunctionally sensory neurotransmission in rat mesenteric arteries and that this action is independent of cannabinoid CB(1)- or CB(2)-like receptors.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources