Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2001 Mar;42(3):401-7.

Automatic determination of left ventricular ejection fraction from gated blood-pool tomography

Affiliations
  • PMID: 11337514
Free article
Comparative Study

Automatic determination of left ventricular ejection fraction from gated blood-pool tomography

C Vanhove et al. J Nucl Med. 2001 Mar.
Free article

Abstract

The aim of this study was to develop and validate a new algorithm to automatically compute left ventricular ejection fraction (LVEF) from gated blood-pool tomography (GBPT). The results were compared with those of conventional planar radionuclide angiocardiography (PRNA).

Methods: Fifty-three consecutive patients received an injection of 740 MBq (99m)Tc-labeled human serum albumin. PRNA and GBPT were performed consecutively in a random sequence. PRNA served as the reference, and GBPT images were processed using a new edge detection algorithm. The algorithm is fast (<45 s), fully automatic, and works in three-dimensional space. The method includes identification of the valve plane and the septum. The left ventricular cavity at end-diastole is delineated by segmentation using an iterative threshold technique. An optimal threshold is reached when the corresponding isocontour best fits the first derivative of the end-diastolic count distribution in three dimensions. This optimal threshold is then applied to delineate the left ventricular cavity on the other time bins. The data are corrected for the partial-volume effect. Left ventricular volumes are determined using a geometry-based method and are used to calculate the ejection fraction.

Results: The success rate of the new algorithm was 94%. LVEFs calculated from GBPT agreed well with those calculated from PRNA (r = 0.78; GBPT = 0.94 PRNA + 6.33). The systematic error was 2.8%, and the random error was 8.8%. Excellent inter- and intraobserver reproducibility was found, with average differences of 1.1% +/- 4.6% and 1.1% +/- 5.0%, respectively, between the two measurements.

Conclusion: This new algorithm provides a fast, automated, and objective method to calculate LVEF from GBPT.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources