Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001 Apr;28(4):332-9.
doi: 10.1046/j.1440-1681.2001.03450.x.

Renal microvascular effects of P2 receptor stimulation

Affiliations
Review

Renal microvascular effects of P2 receptor stimulation

E W Inscho. Clin Exp Pharmacol Physiol. 2001 Apr.

Abstract

1. The field of extracellular nucleotides and purinoceptors has undergone a resurgence of interest and enthusiasm in the past decade. More and more investigators are probing the physiological and pathophysiological roles of P2 receptors in virtually every organ system, including the kidney. 2. With this renewed interest has come a new appreciation for the roles extracellular adenine nucleotides can play in regulating or modulating renal function. In the past 5 years, investigators have provided compelling evidence that extracellular nucleotides, working through activation of P2 purinoceptors, have a significant impact on renal microvascular function, mesangial cell function and on renal epithelial transport. 3. Evidence has been uncovered that implicates P2 receptor activation in mediating renal microvascular autoregulatory behaviour. Locally released ATP has a direct paracrine and/or autocrine effect modulating renal epithelial transporters and tubular epithelial channels to influence tubular fluid composition. 4. While the specific roles of extracellular nucleotides and their receptors in the kidney have not been absolutely identified, it now appears clear that endogenously released ATP may play a significant role in regulating kidney function. 5. The purpose of the present review is to update our current understanding of the effect of P2 receptor activation on renal microvascular function and to detail the signal transduction mechanisms known to be involved.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources