Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 May;131(5):1414-20.
doi: 10.1093/jn/131.5.1414.

Zinc has an insulin-like effect on glucose transport mediated by phosphoinositol-3-kinase and Akt in 3T3-L1 fibroblasts and adipocytes

Affiliations

Zinc has an insulin-like effect on glucose transport mediated by phosphoinositol-3-kinase and Akt in 3T3-L1 fibroblasts and adipocytes

X Tang et al. J Nutr. 2001 May.

Abstract

Zinc has insulin-like effects on cells, including promotion of both lipogenesis and glucose transport. The relationship between zinc and the stimulation of glucose transport is unclear. We hypothesize that zinc affects the insulin-signaling pathway. In this study, the effect of zinc on glucose transport and insulin signaling was examined in 3T3-L1-preadipocytes and -adipocytes. Treatment of cells with up to 200 micromol/L zinc significantly increased glucose transport (P < 0.05). The effect of zinc on adipocytes was greater than on preadipocytes, and the effect of zinc plus insulin was greater than that of either insulin or zinc alone. Cytochalasin D, which disrupts actin filaments, attenuated the increase of glucose transport induced by zinc or insulin (P < 0.05). At 100 nmol/L, wortmannin, the phosphoinositide (PI) 3-kinase inhibitor, decreased basal glucose transport and blocked zinc-stimulated glucose transport in both cell types (P < 0.05). H7, an inhibitor of protein kinase C, did not reduce basal glucose transport but decreased zinc-induced glucose transport (P < 0.05). Zinc increased tyrosine phosphorylation of the insulin receptor beta subunit of both preadipocytes and adipocytes after 5-10 min of treatment (P < 0.05). Zinc at 200 micromol/L did not affect tyrosine phosphorylation of insulin receptor substrate (IRS)-1 or -2; further, there was no effect of zinc on the association of the p85 subunit of PI 3-kinase and IRS-1. Zinc significantly increased serine-473 phosphorylation of Akt in both preadipocytes and adipocytes (P < 0.05). The PI 3-kinase inhibitor, wortmannin, totally blocked the effect of zinc on Akt activation. Hence, it appears that zinc can induce an increase in glucose transport into cells and potentiate insulin-induced glucose transport, likely acting through the insulin-signaling pathway.

PubMed Disclaimer

Similar articles

Cited by