Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Jan 12;1544(1-2):74-88.
doi: 10.1016/s0167-4838(00)00206-5.

Interaction of Escherichia coli purine nucleoside phosphorylase (PNP) with the cationic and zwitterionic forms of the fluorescent substrate N(7)-methylguanosine

Affiliations

Interaction of Escherichia coli purine nucleoside phosphorylase (PNP) with the cationic and zwitterionic forms of the fluorescent substrate N(7)-methylguanosine

G Stoychev et al. Biochim Biophys Acta. .

Abstract

Steady-state and time-resolved fluorescence spectroscopy, and enzyme kinetics, were applied to study the reaction of purine nucleoside phosphorylase (PNP) from Escherichia coli with its substrate N(7)-methylguanosine (m7Guo), which consists of an equilibrium mixture of cationic and zwitterionic forms (pK(a)=7.0), each with characteristic absorption and fluorescence spectra, over the pH range 6-9, where absorption and intrinsic fluorescence of the enzyme are virtually unchanged. The pH-dependence of kinetic constants for phosphorolysis of m7Guo were studied under condition where the population of the zwitterion varied from 10% to 100%. This demonstrated that, whereas the zwitterion is a 3- to 6-fold poorer substrate, if at all, than the cation for the mammalian enzymes, both ionic species are almost equally good substrates for E. coli PNP. The imidazole-ring-opened form of m7Guo is neither a substrate nor an inhibitor of phosphorolysis. Enzyme fluorescence quenching, and concomitant changes in absorption and fluorescence spectra of the two ionic species of m7Guo on binding, showed that both forms are bound by the enzyme, the affinity of the zwitterion being 3-fold lower than that of the cation. Binding of m7Guo is bimodal, i.e., an increase in ligand concentration leads to a decrease in the association constant of the enzyme-ligand complex, typical for negative cooperativity of enzyme-ligand binding, with a Hill constant <1. This is in striking contrast to interaction of the enzyme with the parent Guo, for which the association constant is independent of concentration. The weakly fluorescent N(7)-methylguanine (m7Gua), the product of phosphorolysis of m7Guo, is a competitive non-substrate inhibitor of phosphorolysis (K(i)=8+/-2 microM) and exhibits negative cooperativity on binding to the enzyme at pH 6.9. Quenching of enzyme emission by the ligands is a static process, inasmuch as the mean excited-state lifetime, <tau>=2.7 ns, is unchanged in the presence of the ligands, and the constants K(SV) may therefore be considered as the association constants for the enzyme-ligand complexes. In the pH range 9.5-11 there is an instantaneous reversible decrease in PNP emission of approximately 15%, corresponding to one of the six tyrosine residues per subunit readily accessible to solvent, and OH- ions. Relevance of the overall results to the mechanism of phosphorolysis, and binding of substrates/inhibitors is discussed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources