Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Feb 9;1510(1-2):56-69.
doi: 10.1016/s0005-2736(00)00335-7.

Selective protein interactions with phosphatidylserine containing liposomes alter the steric stabilization properties of poly(ethylene glycol)

Affiliations
Free article

Selective protein interactions with phosphatidylserine containing liposomes alter the steric stabilization properties of poly(ethylene glycol)

G N Chiu et al. Biochim Biophys Acta. .
Free article

Abstract

Incorporation of 5 mol% poly(ethylene glycol)-conjugated lipids (PEG-lipids) has been shown to extend the circulation longevity of neutral liposomes due to steric repulsion of PEG at the membrane surface. The effects of PEG-lipids on protein interactions with biologically reactive membranes were examined using phosphatidylserine (PS) containing liposomes as the model. Incorporating 15 mol% 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE)-PEG 2000 into PS liposomes resulted in circulation lifetimes comparable to that obtained with neutral liposomes containing 5 mol% DSPE-PEG 2000. These results suggested that 15 mol% DSPE-PEG 2000 may be effective in protecting PS liposomes from the high affinity, PS-mediated binding of plasma proteins. This was determined by monitoring the effects of PEG-lipids on calcium-mediated blood coagulation protein interactions with PS liposomes. Prothrombin binding and procoagulant activity of PS liposomes could be inhibited >80% when 15 mol% DSPE-PEG 2000 was used. These results are consistent with PS on membrane surfaces forming transient nucleation sites for protein binding that may result in lateral exclusion of PEG-lipids incorporated at <10 mol%. These nucleation sites may be inaccessible when PEG-lipids are present at elevated levels where they adopt a highly compressed brush conformation. This suggests that liposomes with reactive groups and PEG-lipids may be appropriately designed to impart selectivity to protein interactions with membrane surfaces.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources