Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 May 8;103(18):2277-82.
doi: 10.1161/01.cir.103.18.2277.

Absence of 12/15-lipoxygenase expression decreases lipid peroxidation and atherogenesis in apolipoprotein e-deficient mice

Affiliations

Absence of 12/15-lipoxygenase expression decreases lipid peroxidation and atherogenesis in apolipoprotein e-deficient mice

T Cyrus et al. Circulation. .

Abstract

Background: The enzyme 12/15-lipoxygenase (12/15-LO) has been implicated in the oxidative modification of LDL. In a murine model, we tested the hypothesis that deletion of 12/15-LO decreases atherogenesis by reducing oxidant stress, as measured by 2 indices of lipid peroxidation: isoprostane generation and autoantibody formation to malondialdehyde (MDA)-LDL, an epitope of LDL formed as a result of oxidative modification.

Methods and results: 12/15-LO-deficient (12/15-LO(-/-)) mice were crossed with apolipoprotein E-deficient (apoE(-/-)) mice. At 10 weeks of age, atherosclerotic lesion initiation was significantly delayed in the double-knockout mice. The rate of lesion progression was diminished at 8 and 12 months, and even at 15 months, lesion size was reduced 50% (P<0.0005) compared with control apoE(-/-) mice. The urinary and plasma levels of the specific isoprostane 8,12-iso-iPF(2alpha)-VI, as well as IgG autoantibodies against MDA-LDL, were significantly reduced in the double-deficient mice in parallel with decreased atherosclerosis at all time points from 10 weeks to 15 months of age compared with apoE(-/-) controls.

Conclusions: Enzymatic action of 12/15-LO contributes significantly to atherosclerotic lesion initiation and propagation in this murine model. Strong positive correlations exist between lesion size, isoprostane levels, and MDA-LDL autoantibodies, providing in vivo evidence for an enzymatic (12/15-LO) component to lipid peroxidation and atherogenesis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources