Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Apr 27;418(3):207-11.
doi: 10.1016/s0014-2999(01)00937-2.

Intravenous administration of ecstasy (3,4-methylendioxymethamphetamine) enhances cortical and striatal acetylcholine release in vivo

Affiliations

Intravenous administration of ecstasy (3,4-methylendioxymethamphetamine) enhances cortical and striatal acetylcholine release in vivo

E Acquas et al. Eur J Pharmacol. .

Abstract

The effect of intravenous administration of 3,4-methylendioxymethamphetamine (MDMA), in a range of doses (0.32-3.2 mg/kg) that have been shown to maintain self-administration behaviour in rats, on in vivo acetylcholine release from rat prefrontal cortex and dorsal striatum was studied by means of microdialysis with vertical concentric probes. Intravenous administration of MDMA dose-dependently increased basal acetylcholine release from the prefrontal cortex to 57+/-21%, 98+/-20%, 102+/-7% and 141+/-14% above baseline, at doses of 0.32, 0.64, 1.0 and 3.2 mg/kg, respectively. MDMA also stimulated striatal acetylcholine release at the dose of 3.2 mg/kg i.v. (the maximal increase being 32+/-3% above baseline) while at the dose of 1 mg/kg i.v., MDMA failed to affect basal acetylcholine output. Administration of MDMA also dose-dependently stimulated behaviour. The results of the present study show that MDMA affects measures of central cholinergic neurotransmission in vivo and suggest that at least some of the psychomotor stimulant actions of MDMA might be positively coupled with an increase in prefrontal cortical and striatal acetylcholine release.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources