An evolutionary scaling law for the primate visual system and its basis in cortical function
- PMID: 11346795
- DOI: 10.1038/35075572
An evolutionary scaling law for the primate visual system and its basis in cortical function
Abstract
A hallmark of mammalian brain evolution is the disproportionate increase in neocortical size as compared with subcortical structures. Because primary visual cortex (V1) is the most thoroughly understood cortical region, the visual system provides an excellent model in which to investigate the evolutionary expansion of neocortex. I have compared the numbers of neurons in the visual thalamus (lateral geniculate nucleus; LGN) and area V1 across primate species. Here I find that the number of V1 neurons increases as the 3/2 power of the number of LGN neurons. As a consequence of this scaling law, the human, for example, uses four times as many V1 neurons per LGN neuron (356) to process visual information as does a tarsier (87). I argue that the 3/2 power relationship is a natural consequence of the organization of V1, together with the requirement that spatial resolution in V1 should parallel the maximum resolution provided by the LGN. The additional observation that thalamus/neocortex follows the same evolutionary scaling law as LGN/V1 may suggest that neocortex generally conforms to the same organizational principle as V1.
Similar articles
-
Three-dimensional structure and evolution of primate primary visual cortex.Anat Rec A Discov Mol Cell Evol Biol. 2004 Nov;281(1):1088-94. doi: 10.1002/ar.a.20114. Anat Rec A Discov Mol Cell Evol Biol. 2004. PMID: 15470669
-
Functional cell classes and functional architecture in the early visual system of a highly visual rodent.Prog Brain Res. 2005;149:127-45. doi: 10.1016/S0079-6123(05)49010-X. Prog Brain Res. 2005. PMID: 16226581 Review.
-
Visual thalamocortical projections in the flying fox: parallel pathways to striate and extrastriate areas.Neuroscience. 2005;130(2):497-511. doi: 10.1016/j.neuroscience.2004.09.047. Neuroscience. 2005. PMID: 15664706
-
Predicting functional properties of visual cortex from an evolutionary scaling law.Neuron. 2002 Sep 26;36(1):139-42. doi: 10.1016/s0896-6273(02)00902-9. Neuron. 2002. PMID: 12367512
-
The dynamics of visual responses in the primary visual cortex.Prog Brain Res. 2007;165:21-32. doi: 10.1016/S0079-6123(06)65003-6. Prog Brain Res. 2007. PMID: 17925238 Review.
Cited by
-
Relation of connectome topology to brain volume across 103 mammalian species.PLoS Biol. 2024 Feb 5;22(2):e3002489. doi: 10.1371/journal.pbio.3002489. eCollection 2024 Feb. PLoS Biol. 2024. PMID: 38315722 Free PMC article.
-
The natural science underlying big history.ScientificWorldJournal. 2014;2014:384912. doi: 10.1155/2014/384912. Epub 2014 Jun 17. ScientificWorldJournal. 2014. PMID: 25032228 Free PMC article. Review.
-
Re-evaluating Circuit Mechanisms Underlying Pattern Separation.Neuron. 2019 Feb 20;101(4):584-602. doi: 10.1016/j.neuron.2019.01.044. Neuron. 2019. PMID: 30790539 Free PMC article. Review.
-
Dynamics and processing in finite self-similar networks.J R Soc Interface. 2012 Sep 7;9(74):2131-44. doi: 10.1098/rsif.2011.0840. Epub 2012 Feb 29. J R Soc Interface. 2012. PMID: 22378750 Free PMC article.
-
The scaling of frontal cortex in primates and carnivores.Proc Natl Acad Sci U S A. 2004 Mar 16;101(11):3962-6. doi: 10.1073/pnas.0305760101. Epub 2004 Mar 8. Proc Natl Acad Sci U S A. 2004. PMID: 15007170 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Research Materials