Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Apr;212(5-6):739-48.
doi: 10.1007/s004250000485.

A few molecules of zeaxanthin per reaction centre of photosystem II permit effective thermal dissipation of light energy in photosystem II of a poikilohydric moss

Affiliations

A few molecules of zeaxanthin per reaction centre of photosystem II permit effective thermal dissipation of light energy in photosystem II of a poikilohydric moss

N G Bukhov et al. Planta. 2001 Apr.

Abstract

The relationship between thermal dissipation of light energy (as indicated by the quenching of chlorophyll fluorescence), zeaxanthin availability and protonation reactions was investigated in the moss Rhytidiadelphus squarrosus (Hedw.) Warnst. In the absence of zeaxanthin and actinic illumination, acidification by 20% CO2 in air was incapable of quenching basal, so-called F0 fluorescence either in the moss or in spinach (Spinacia oleracea L.) leaves. However, 1-s light pulses given either every 40, 60 or 200 s increased thermal dissipation as indicated by F0 and Fm quenching in the presence of 20% CO2 in air in the moss, but not in spinach while reaction centres of photosystem II (PSII) were photochemically open. In the moss, a few short light pulses, which were separated by prolonged dark times, were sufficient to raise zeaxanthin levels in the presence of 20% CO2 in air. Simultaneously, quantum efficiency of charge separation in PSII was decreased. Increasing the CO2 concentration beyond 20% further decreased quantum efficiency even in the absence of short light pulses. Under conditions optimal for fluorescence quenching, one molecule of zeaxanthin per reaction centre of PSII was sufficient to decrease quantum efficiency of charge separation in PSII by 50%. Thus, in combination with a protonation reaction, one molecule of zeaxanthin was as efficient at capturing excitation energy as a photochemically open reaction centre. The data are discussed in relation to the interaction between zeaxanthin and thylakoid protonation, which enables effective thermal dissipation of light energy in the antennae of PSII in the moss but not in higher plants when actinic illumination is absent.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources