Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 May 18;66(10):3402-15.
doi: 10.1021/jo005761z.

Improved catalysts for the palladium-catalyzed synthesis of oxindoles by amide alpha-arylation. Rate acceleration, use of aryl chloride substrates, and a new carbene ligand for asymmetric transformations

Affiliations

Improved catalysts for the palladium-catalyzed synthesis of oxindoles by amide alpha-arylation. Rate acceleration, use of aryl chloride substrates, and a new carbene ligand for asymmetric transformations

S Lee et al. J Org Chem. .

Abstract

Catalysts comprised Pd(OAc)(2) and either PCy(3) or sterically hindered N-heterocyclic carbene ligands provide fast rates for a palladium-catalyzed synthesis of oxindoles by amide alpha-arylation. This catalyst system allowed for room-temperature reactions in some cases and reactions of aryl chlorides at 70 degrees C. Most important, reactions occurred in high yields under mild conditions to form the quaternary carbon in alpha,alpha-disubstituted oxindoles. The combined inter- and intramolecular reaction afforded an efficient synthetic method for formation of alpha-aryloxindole derivatives. Surprisingly, catalysts containing tert-butylphosphine ligands, which have been most reactive for ketone arylations, were less active than those containing PCy(3). Use of new, optically active heterocyclic carbene ligands gave substantial enantioselectivity in formation of an alpha,alpha-disubstituted oxindole. In contrast, a variety of optically active phosphine ligands that were tested gave poor enantioselectivity. Mechanistic studies showed that the reaction involves rate-limiting oxidative addition of aryl halide. Base-induced formation of and reductive elimination from an arylpalladium enolate intermediate were both faster than oxidative addition. Deprotonation of the tethered amide appeared to be faster than reductive elimination of the resulting palladium enolate to form the oxindole product.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources