Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2001 May 30;83(3):255-64.
doi: 10.1016/s0304-3894(01)00194-7.

Oxidation of p-hydroxybenzoic acid by UV radiation and by TiO2/UV radiation: comparison and modelling of reaction kinetic

Affiliations
Comparative Study

Oxidation of p-hydroxybenzoic acid by UV radiation and by TiO2/UV radiation: comparison and modelling of reaction kinetic

J B De Heredia et al. J Hazard Mater. .

Abstract

The phenolic compound p-hydroxybenzoic acid is very common in a great variety of agroindustrial wastewaters (olive oil and table olive industries, distilleries). The objective of this work was to study the photocatalytic activity of TiO2 towards the decomposition of p-hydroxybenzoic acid. In order to demonstrate the greater oxidizing power of the photocatalytic system and to quantify the additional levels of degradation attained, we performed experiments on the oxidation of p-hydroxybenzoic acid by UV radiation alone and by the TiO2/UV radiation combination. A kinetic model is applied for the photooxidation by UV radiation and by the TiO(2)/UV system. Experimental results indicated that the kinetics for both oxidation processes can be fitted well by a pseudo-first-order kinetic model. The second oxidation process can be explained in terms of the Langmuir-Hinshelwood kinetic model. The values of the adsorption equilibrium constant, K(pHB), and the second order kinetic rate constant, k(c), were 0.37 ppm(-1) and 6.99 ppm min(-1), respectively. Finally, a comparison between the kinetic rate constants for two oxidation systems reveals that the constants for the TiO2/UV system are clearly greater (between 220-435%) than those obtained in the direct UV photooxidation.

PubMed Disclaimer

Publication types

LinkOut - more resources