Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Oct-Dec;20(5-6):281-90.
doi: 10.1046/j.1365-2680.2000.00194.x.

SERCA function declines with age in adrenergic nerves from the superior cervical ganglion

Affiliations

SERCA function declines with age in adrenergic nerves from the superior cervical ganglion

W J Pottorf et al. J Auton Pharmacol. 2000 Oct-Dec.

Abstract

1. Intracellular calcium is a universal second messenger integrating numerous cellular pathways. An age-related breakdown in the mechanisms controlling [Ca2+]i homeostasis could contribute to neuronal degeneration. One component of neuronal calcium regulation believed to decline with age is the function of sarco/endoplasmic reticulum calcium ATPase (SERCA) pumps. 2. Therefore we investigated the impact of age on the capacity of SERCA pumps to control high (68 mM) [K+]-evoked [Ca2+]i-transients in acutely dissociated superior cervical ganglion (SCG) cells from 6- and 20-month-old Fisher-344 rats. Calcium transients were measured by fura-2 microfluorometry in the presence of vanadate (0.1 microM) to selectively block plasma membrane calcium ATPase (PMCA) pumps, dinitrophenol (100 microM) to block mitochondrial calcium uptake and extracellular sodium replaced with tetraethylammonium to block Na+/Ca2+-exchanger, thus forcing the neuronal cells to rely on SERCA uptake to control [Ca2+]i homeostasis. 3. In the presence of these calcium buffering blockers, the rate of recovery of [Ca2+]i was significantly slower and time to recover to approximately 90% of resting [Ca2+]i was significantly greater in SCG cells from old (20 months) compared with young (6 months) animals. 4. This age-related change in the recovery phase of [K+]-evoked [Ca2+]i-transients could not be explained by differences in the sensitivity of SCG cells to the calcium buffering blockers, as no age-related difference in basal [Ca2+]i was observed. 5. These studies illustrate that when rat SCG cells are forced to rely on SERCAs to buffer [K+]-evoked [Ca2+]i-transients, an age-related decline in SERCA function is revealed. Such age-related declines in calcium regulation coupled with neuronal sensitivity to calcium overload underscore the importance of understanding the components of [Ca2+]i homeostasis and the functional compensation that may occur with advancing age.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources