Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Jun;280(6):C1412-21.
doi: 10.1152/ajpcell.2001.280.6.C1412.

Calcium-sensing receptor activation induces intracellular calcium oscillations

Affiliations
Free article

Calcium-sensing receptor activation induces intracellular calcium oscillations

G E Breitwieser et al. Am J Physiol Cell Physiol. 2001 Jun.
Free article

Abstract

Parathyroid hormone secretion is exquisitely sensitive to small changes in serum Ca2+ concentration, and these responses are transduced via the Ca2+-sensing receptor (CaR). We utilized heterologous expression in HEK-293 cells to determine the effects of small, physiologically relevant perturbations in extracellular Ca2+ on CaR signaling via phosphatidylinositol-phospholipase C, using changes in fura 2 fluorescence to quantify intracellular Ca2+. Chronic exposure of CaR-transfected cells to Ca2+ in the range from 0.5 to 3 mM modulated the resting intracellular Ca2+ concentration and the subsequent cellular responses to acute extracellular Ca2+ perturbations but had no effect on thapsigargin-sensitive Ca2+ stores. Modest, physiologically relevant increases in extracellular Ca2+ concentration (0.5 mM increments) caused sustained (30-40 min) low-frequency oscillations of intracellular Ca2+ (approximately 45 s peak to peak interval). Oscillations were eliminated by 1 microM thapsigargin but were insensitive to protein kinase inhibitors (staurosporine, KN-93, or bisindolylmaleimide I). Staurosporine did increase the fraction of cells oscillating at a given extracellular Ca2+ concentration. Serum Ca2+ concentrations thus chronically regulate cells expressing CaR, and small perturbations in extracellular Ca2+ alter both resting intracellular Ca2+ as well as Ca2+ dynamics.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources