Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Jun;280(6):C1561-9.
doi: 10.1152/ajpcell.2001.280.6.C1561.

Calpain 3 mRNA expression in mice after denervation and during muscle regeneration

Affiliations
Free article

Calpain 3 mRNA expression in mice after denervation and during muscle regeneration

D Stockholm et al. Am J Physiol Cell Physiol. 2001 Jun.
Free article

Abstract

Lack of functional calpain 3 in humans is a cause of limb girdle muscular dystrophy, but the function(s) of calpain 3 remain(s) unknown. Special muscle conditions in which calpain 3 is downregulated could yield valuable clues to the understanding of its function(s). We monitored calpain 3 mRNA amounts by quantitative RT-PCR and compared them with those of alpha-skeletal actin mRNA in mouse leg muscles for different types of denervation and muscle injury. Intact muscle denervation reduced calpain 3 mRNA expression by a factor of 5 to 10, while alpha-skeletal actin mRNA was reduced in a slower and less extensive manner. Muscle injury (denervation-devascularization), which leads to muscle degeneration and regeneration, induced a 20-fold decrease in the mRNA level of both calpain 3 and alpha-skeletal actin. Furthermore, whereas in normal muscle and intact denervated muscle, the full-length transcript is the major calpain 3 mRNA, in injured muscle, isoforms lacking exon 6 are predominant during the early regeneration process. These data suggest that muscle condition determines the specific calpain 3 isoform pattern of expression and that calpain 3 expression is downregulated by denervation.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources