Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Mar 1;35(5):894-900.
doi: 10.1021/es000042n.

Metal speciation dynamics and bioavailability. 2. Radial diffusion effects in the microorganism range

Affiliations

Metal speciation dynamics and bioavailability. 2. Radial diffusion effects in the microorganism range

J P Pinheiro et al. Environ Sci Technol. .

Abstract

The free ion activity model for the biouptake of metals from complex media is limited to cases where mass transfer is not flux determining. This paper follows a previous paper (Van Leeuwen, H. P. Environ. Sci. Technol. 1999, 33, 3743) where speciation dynamics and bioavailability of metals are analyzed in terms of bioconversion kinetics and simultaneous metal transport in the medium coupled with dissociation kinetics. Such analysis shows under what conditions labile complex species contribute to the biouptake process or, equivalently, under what conditions the free ion activity model is not obeyed. The present work addresses the theoretical extension of the expressions for the metal flux in the medium by a radial diffusion term so that these are also applicable in the microorganism size range. The transition from macroscopic to microscopic surfaces affects not only the nature of the flux but also the extent of lability of complex species (Van Leeuwen, H. P.; Pinheiro, J. P. J. Electroanal. Chem. 1999, 471, 55), and this can have a dramatic influence on the rate of biouptake of metal ions. Labilities of metal complexes and the ensuing limiting metal fluxes are therefore systematically analyzed for various dimensions of the uptaking surface. Different conditions of bioaffinities and bioconversion capacities are considered, and a number of examples of metal complexes with specified kinetic features are discussed.

PubMed Disclaimer

LinkOut - more resources