Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Mar;32(2):121-33.
doi: 10.1006/fgbi.2001.1256.

A genetic and biochemical approach to study trichothecene diversity in Fusarium sporotrichioides and Fusarium graminearum

Affiliations

A genetic and biochemical approach to study trichothecene diversity in Fusarium sporotrichioides and Fusarium graminearum

D W Brown et al. Fungal Genet Biol. 2001 Mar.

Abstract

The trichothecenes T-2 toxin and deoxynivalenol (DON) are natural fungal products that are toxic to both animals and plants. Their importance in the pathogenicity of Fusarium spp. on crop plants has inspired efforts to understand the genetic and biochemical mechanisms leading to trichothecene synthesis. In order to better understand T-2 toxin biosynthesis by Fusarium sporotrichioides and DON biosynthesis by F. graminearum, we compared the nucleotide sequence of the 23-kb core trichothecene gene cluster from each organism. This comparative genetic analysis allowed us to predict proteins encoded by two trichothecene genes, TRI9 and TRI10, that had not previously been described from either Fusarium species. Differences in gene structure also were correlated with differences in the types of trichothecenes that the two species produce. Gene disruption experiments showed that F. sporotrichioides TRI7 (FsTRI7) is required for acetylation of the oxygen on C-4 of T-2 toxin. Sequence analysis indicated that F. graminearum TRI7 (FgTRI7) is nonfunctional. This is consistent with the fact that the FgTRI7 product is not required for DON synthesis in F. graminearum because C-4 is not oxygenated.

PubMed Disclaimer

Associated data

LinkOut - more resources