Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Jun;280(6):G1280-8.
doi: 10.1152/ajpgi.2001.280.6.G1280.

Role of protein tyrosine phosphorylation in acetaldehyde-induced disruption of epithelial tight junctions

Affiliations
Free article

Role of protein tyrosine phosphorylation in acetaldehyde-induced disruption of epithelial tight junctions

K J Atkinson et al. Am J Physiol Gastrointest Liver Physiol. 2001 Jun.
Free article

Abstract

Acetaldehyde-induced cytotoxicity is an important factor in pathogenesis of alcohol-related diseases; however, the mechanism of this toxicity is unknown. We recently showed that acetaldehyde increases epithelial paracellular permeability. We asked whether protein tyrosine phosphorylation via modulation of tyrosine kinases and/or PTPases is a mechanism involved in acetaldehyde-induced disruption of the tight junctions in the Caco-2 cell monolayer. Immunofluorescence localization of occludin and ZO-1 showed disruption of the tight junctions in acetaldehyde-treated cell monolayer. Administration of genistein prevented acetaldehyde-induced permeability. Acetaldehyde increased tyrosine phosphorylation of three clusters of proteins with molecular masses of 30-50, 60-90, and 110-150 kDa; three of these proteins were ZO-1, E-cadherin, and beta-catenin. Acetaldehyde reduced PTPase activity in plasma membrane and soluble fractions, whereas tyrosine kinase activity remained unaffected. Treatment with acetaldehyde resulted in a 97% loss of protein tyrosine phosphatase (PTP)1B activity and a partial reduction of PTP1C and PTP1D activities. These results strongly suggest that acetaldehyde inhibits PTPases to increase protein tyrosine phosphorylation, which may result in disruption of the tight junctions.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources