Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Jun;29(6):794-7.

Rat cytochrome p450 1A and 3A enzymes involved in bioactivation of tegafur to 5-fluorouracil and autoinduced by tegafur in liver microsomes

Affiliations
  • PMID: 11353746

Rat cytochrome p450 1A and 3A enzymes involved in bioactivation of tegafur to 5-fluorouracil and autoinduced by tegafur in liver microsomes

H Yamazaki et al. Drug Metab Dispos. 2001 Jun.

Abstract

Tegafur, an anticancer prodrug, is reported to be bioactivated to 5-fluorouracil (5-FU) by cytochrome P450 (P450) enzymes. Liver microsomal P450 enzymes involved in the biotransformation of tegafur into 5-FU in rats and the effect of tegafur in vivo on P450 levels in rats were investigated. Of 12 cDNA-expressed rat P450 enzymes tested, CYP1A2, CYP3A1, and CYP2C11 had high 5-FU formation rates from 100 microM and 1.0 mM tegafur concentrations. The contributions of CYP1A, CYP2C, and CYP3A enzymes to 5-FU formation in male rat liver microsomes were supported by immunoinhibition studies. 5-FU formation from tegafur, at substrate concentrations of 100 microM and 1.0 mM, was increased by intraperitoneal treatment of tegafur (50 mg/kg for 5 days) as well as by beta-naphthoflavone, phenobarbital, and dexamethasone. Orally administered tegafur (100 mg/kg daily for 20 days) caused the induction of CYP2B (5-fold) and of CYP1A and CYP3A (approximately 2-fold) and of 5-FU formation (approximately 2-fold) in rat liver microsomes. These results suggest that CYP1A and CYP3A enzymes, autoinduced by tegafur, have important roles in 5-FU formation from tegafur in rat liver microsomes. Coadministration of tegafur and P450-inducing drugs could markedly enhance the biotransformation of tegafur into 5-FU via P450 induction.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources