Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Jun;59(6):1441-5.
doi: 10.1124/mol.59.6.1441.

Insights into the mechanism of azithromycin interaction with an Escherichia coli functional ribosomal complex

Affiliations

Insights into the mechanism of azithromycin interaction with an Escherichia coli functional ribosomal complex

G P Dinos et al. Mol Pharmacol. 2001 Jun.

Abstract

Azithromycin, a derivative of erythromycin with improved activity against Gram-negative bacteria, exhibits a marginal inhibition effect in a model system derived from Escherichia coli, in which a peptide bond is formed between puromycin and AcPhe-tRNA bound at the P-site of poly(U)-programmed ribosomes. This renders the study of azithromycin interaction with Ac[(3)H]Phe-tRNA. poly(U). 70S ribosome complex (complex C) impossible, if we analyze its effect on peptide bond formation. To overcome this problem, we have used an alternative approach to investigate kinetically the azithromycin interaction with complex C and to compare the azithromycin binding properties with those of erythromycin. This approach was based on the ability of azithromycin to compete with tylosin, a macrolide antibiotic strongly inhibiting the puromycin reaction. Detailed kinetic analysis revealed that the encounter complex CA between complex C and azithromycin (A) undergoes a slow isomerization to a tighter complex C*A, which remains active toward puromycin. The determination of inhibition and isomerization rate constants enabled us to classify azithromycin as a slow-binding ligand of ribosomes. Compared with erythromycin, azithromycin is a better inducer and stabilizer of the C*A complex. This finding may explain the superiority of azithromycin as inhibitor of translation in E. coli cells and many other Gram-negative bacteria.

PubMed Disclaimer

LinkOut - more resources